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L3 2024-2025

TD 8 : Formes quadratiques épisode 2

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.
Sauf mention du contraire, K désigne un corps de caractéristique différente de 2.

Exercices importants

Exercice 1. (Réduction de Gauss et théorème de Sylvester)
On reprend les trois formes quadratiques définies dans l’exercice 1 du TD précédent sur R :

— q1(x, y, z) = (x + y)2 − z2, de signature (1, 1) ;
— q2(x, y, z) = xy + yz + zx = 1

4(x + y + 2z)2 − 1
4(x − y)2 − z2, de signature (1, 2) ;

— q3(x, y, z, t) = x2 + y2 + 2(z2 + t2) + xz + xt + zt =
(
x + z+t

2

)2
+ y2 + 7

4

(
z + t

7

)2
+ 12

7 t2, de
signature (4, 0) ;

Déterminer pour chacune d’elle un sous-espace défini positif et défini négatif maximal.

Exercice 2. (Formes quadratiques associées à la trace)
1. Déterminer le rang des formes quadratiques suivantes, et quand K = R leur signature.

(a) q1(M) = Tr(M)2 sur Mn(K) ;
(b) q2(M) = Tr(tMM) sur Mn(K) ;
(c) q3(M) = Tr(M2) sur Mn(K).

2. Soit S ∈ Sn(R) une matrice symétrique de signature (r, s). Calculer la signature de q4(M) =
Tr(tMSM) sur Mn(R).

Exercice 3. (Formes quadratiques sur les corps finis)
Soit p un nombre premier différent de 2 et Fq un corps fini à q = pα éléments.

1. (a) Déterminer le noyau du morphisme c : F×
q → F×

q , définie par x 7→ x2. En déduire qu’il
y a q+1

2 carrés dans Fq.
(b) Montrer que pour a, b ∈ F×

q , l’équation ax2 + by2 = 1 a toujours une solution dans F2
q.

Soit α ∈ F×
q qui n’est pas un carré dans Fq, et soit (E, Q) un Fq-espace vectoriel quadratique.

2. Justifier qu’il existe une base de E telle que la matrice de Q dans cette base estαIk 0 0
0 Iℓ 0
0 0 0

 .

3. On suppose k ⩾ 2, montrer qu’il existe une base telle que la matrice de Q dans cette base
est égale à αIk−2 0 0

0 Iℓ+2 0
0 0 0

 .
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4. En déduire qu’il existe une unique matrice de la forme

(
Ir 0
0 0

)
ou

α 0 0
0 Ir−1 0
0 0 0

 .

telle que Q s’écrit sous cette forme dans une base. Exprimer r en fonction de Q et montrer
que les formes quadratiques correspondant à ces deux matrices ne sont pas équivalentes.

Exercice 4. (Formes quadratiques anisotropes réelles et Cauchy-Schwarz)
Soit (E, q) un espace quadratique réel. On note ϕ la forme polaire de q.

1. Montrer que q est anisotrope si et seulement si q est définie positive ou définie négative.
2. On suppose que q est non nulle. Montrer que q est anisotrope si et seulement elle vérifie

l’inégalité de Cauchy-Schwarz :

∀x, y ∈ E, ϕ(x, y)2 ⩽ q(x)q(y),

avec égalité si et seulement si x et y sont liés.
3. Montrer que ker(q) = C(q) si et seulement si q est positive ou négative.

Exercice 5. (Décomposition polaire)
On considère l’application

p :
∣∣∣∣∣ On(R) × S++

n (R) −→ GLn(R)
(O, S) 7−→ OS

.

On rappelle que p est bijective et continue. On va montrer que l’application p−1 est aussi continue
(et donc que p est un homéomorphisme).

Soit (Pk)k∈N ∈ GLn(R)N qui converge vers une matrice inversible P . On note pour tout k ∈ N,
(Ok, Sk) ∈ On(R) × S++

n (R) l’antécédent de Pk par p.
1. Justifier que l’on peut extraire une sous-suite (Oφ(k))k convergente. On note Oφ la limite de

cette suite.
2. Montrer que (Sφ(k))k converge vers une limite Sφ ∈ S++

n (R).
3. En déduire que le couple (Oφ, Sφ) ne dépend pas de l’extraction φ choisie en question 1 et

que la suite (Ok, Sk)k converge.
4. Conclure.

Exercice 6. (Deux conséquences de la décomposition polaire)
1. Grâce à la décomposition polaire, montrer que On(R) est un sous-groupe compact maximal

(pour l’inclusion) de GLn(R).
2. (a) Montrer que GLn(R) est dense dans Mn(R).

(b) En déduire qu’une décomposition similaire existe encore sur Mn(R). Est-elle unique ?

Exercice 7. (Procédé d’orthonormalisation de Gram-Schmidt et décomposition QR)
Soit (E, q) un R-espace quadratique et on suppose q définie positive. Soient (b1, . . . , bd) une

famille de d vecteurs linéairement indépendants de E. On se propose de démontrer qu’il existe
une famille de d vecteurs (b′

1, . . . , b′
d) vérifiant les propriétés suivantes :

P1 La famille (b′
1, . . . , b′

d) est q-orthonormale.
P2 Pour tout 1 ⩽ k ⩽ d, on a Vect(b′

1, . . . , b′
k) = Vect(b1, . . . , bk).
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C’est-à-dire que l’on cherche à construire famille orthonormale à partir d’une famille libre de
vecteurs. On procède par analyse-synthèse. Supposons qu’une famille (b′

1, . . . , b′
d) vérifiant P1 et

P2 existe.
1. Montrer que b′

1 = 1
q(b1)b1.

2. Soit i ∈ J2, dK. On écrit b′
i = µi,ibi + ∑

j<i
µj,ib

′
j avec µi,j ∈ R. Montrer que l’on doit avoir pour

tout j ∈ J1, i − 1K, µj,i = −µi,iϕ(bi, b′
j).

3. Montrer l’existence d’une famille (b′
i)i vérifiant P1 et P2.

4. Montrer que si l’on rajoute la condition
P3 Pour tout i ∈ J1, dK, ϕ(bi, b′

i) > 0.
alors la famille (b′

i)i est unique.
5. Application : Soit A ∈ GLn(R). En appliquant l’orthonormalisation de Gram-Schmidt aux

colonnes de A, montrer qu’il existe une matrice orthogonale Q ∈ On(R) et une matrice
triangulaire supérieure R telle que A = QR. Donner l’expression de Q et de R en fonction
des vecteurs bi et b′

i.

Exercice 8. (Une matrice symétrique non diagonalisable)

Soit A =
(

1 i
i −1

)
∈ S2(C). Montrer que A n’est pas diagonalisable.

Exercices supplémentaires

Exercice 9. (Topologie de l’espace des formes quadratiques réelles)
Soit E un R-espace vectoriel de dimension finie. Pour p, q ∈ J0, nK tels que p + q ⩽ n, on note

Qp,q(E) l’ensemble des formes quadratiques sur E de signature (p, q).
1. Montrer que Qn,0(E) et Q0,n(E) sont ouverts dans Q(E).
2. Montrer que l’adhérence de Qp,q(E) contient dans X := ⋃

p′⩽p,q′⩽q
Qp′,q′(E).

3. Montrer que Q(E) \ X est ouvert. (Indication : Pour Q ∈ Q(E), considérer les applications
qui à une forme quadratique de E associe sa restriction au sous-espace maximal défini positif
(resp. défini négatif) de Q.)

4. En déduire que X est l’adhérence de Qp,q(E).

Exercice 10. (Signature et mineurs principaux)
Soit (E, q) un espace quadratique. On suppose que q est non dégénérée.

1. Soit δ le déterminant d’une matrice de q. Soit H un hyperplan de E et (e1, . . . , en−1) une
base de H orthogonale pour q. Montrer qu’il existe en ∈ E tel que e = (e1, . . . , en) est une
base de E et tel que la matrice de q dans la base e soit diagonale de déterminant δ.

2. Pour une matrice A ∈ Mn(K) et i ∈ J1, nK, on note ∆i le i-ième mineur principal de A,
c’est-à-dire le déterminant de la matrice (Ak,ℓ)k,ℓ∈J1,iK.
Soit S ∈ Sn(K) la matrice de q dans une base de E. On suppose que tous les mineurs
principaux de S sont non nuls. Montrer qu’il existe une base de E telle que la matrice de q
dans cette base soit diagonale égale à

diag
(

∆1(S), ∆2(S)
∆1(S) , . . . ,

∆n(S)
∆n−1(S)

)
.
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3. On garde les notations et les hypothèses de la question précédente. On suppose que K = R.
Montrer que la signature de q est égal à (n − s, s) où s est le nombre de changement de
signes dans la suite (1, ∆1(S), ∆2(S), . . . , ∆n(S)).

Exercice 11.
Soit E un C-espace vectoriel de dimension finie, et soit q : E → C une forme quadratique.
Montrer que Re(q) : x 7→ Re(q(x)) est une forme quadratique sur le R-espace vectoriel E et

donner sa signature en fonction du rang de q.

Exercice 12. (Loi de réciprocité quadratique)
Soit p un nombre premier impair. On définit le symbole de Legendre

(
·
p

)
: Z → {−1, 0, 1} par

(
a

p

)
=


0 si p | a
1 si p ∤ a et a est un carré modulo p
−1 si p ∤ a et a n’est pas un carré modulo p

On a de plus
(

a
p

)
≡ a

p−1
2 [p].

On veut démontrer dans cet exercice la loi de réciprocité quadratique : pour tous nombres
premiers impairs distincts p, q, on a(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

On note X = {(x1, ..., xp) ∈ Fp
q |

p∑
i=1

x2
i = 1}. On va calculer son cardinal de deux manières

différentes.
1. On fait agir Z/pZ sur X par k · (x1, ..., xp) = (xk+1, ..., xk+p).

(a) Que dire sur les orbites de l’action ?
(b) En utilisant la formule des classes, démontrer que |X| ≡ 1 +

(
p
q

)
[p].

2. On note f la forme quadratique de Fp
q définie par :

f(x1, ..., xp) = x2
1 + ... + x2

p.

On note d := p−1
2 , et g la forme quadratique de Fp

q définie par :

g(y1, z1, ..., yd, zd, t) = 2
d∑

i=1
yizi + (−1)dt2.

(a) À l’aide de l’exercice 3, montrer que f et g sont congruentes. En déduire que |X| = |X ′|,
où

X ′ = {(y1, z1, ..., yd, zd, t) ∈ Fp
q | 2

d∑
i=1

yizi + (−1)dt2 = 1}.

On va à présent compter les éléments de X ′.
(b) Combien y a-t-il d’éléments de X ′ tels que tous les yi sont nuls ?
(c) Combien y a-t-il d’éléments de X ′ tels qu’au moins un des yi est non nul ?

3. Conclure en démontrant la loi de réciprocité quadratique.

Exercice 13. (Sous-espaces totalement isotropes : le retour)
On reprend les notations de l’exercice 11 du TD précédent. Soit q une forme quadratique réelle

non dégénérée de signature (s, t). Démontrer que la dimension d’un SETIM est min(s, t).
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