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TD 8 : FORMES QUADRATIQUES EPISODE 2

Les exercices marqués d’'un seront corrigés en TD, si le temps le permet.
Sauf mention du contraire, K désigne un corps de caractéristique différente de 2.

Exercices importants

Exercice 1. (Réduction de Gauss et théoreme de Sylvester)
On reprend les trois formes quadratiques définies dans I'exercice 1 du TD précédent sur R :

— qi(z,y,2) = (z +y)? — 22, de signature (1,1);
— 3,y 2) =xy+yz + 2z = (v +y +22)* — 1 (z — y)? — 22, de signature (1,2);
2 2
— g,y t) =22+ P+ 22 ) baztat+at= () P+ I (24 L)+ 262 de
signature (4,0);

Déterminer pour chacune d’elle un sous-espace défini positif et défini négatif maximal.

Exercice 2. (Formes quadratiques associées a la trace)

1. Déterminer le rang des formes quadratiques suivantes, et quand K = R leur signature.
(a) ¢(M) = Tr(M)? sur M,(K);
(b) (M) =Tr(*MM) sur M, (K);
(c) ¢3(M) = Tr(M?) sur M,(K).

2. Soit S € 5,(R) une matrice symétrique de signature (r, s). Calculer la signature de ¢,(M) =
Tr(*MSM) sur M, (R).

Exercice 3. (Formes quadratiques sur les corps finis)
Soit p un nombre premier différent de 2 et F, un corps fini a ¢ = p® éléments.

1. (a) Déterminer le noyau du morphisme c : F* — Fx, définie par z 22. En déduire qu’il
vy a % carrés dans IF,.
(b) Montrer que pour a, b € F, équation ax® + by? = 1 a toujours une solution dans Iﬁ‘g.
Soit a € ;¥ qui n’est pas un carré dans Fy, et soit (E, Q) un F -espace vectoriel quadratique.

2. Justifier qu’il existe une base de E telle que la matrice de () dans cette base est

Oé]k 0 0
0 I, 0
0 0 0

3. On suppose k£ > 2, montrer qu’il existe une base telle que la matrice de () dans cette base
est égale a

Oé[k,Q 0 0
0 Iyyo O
0 0 O



4. En déduire qu’il existe une unique matrice de la forme

I 0 a 0 0
0 0 ou 0 I,.; O
0O 0 O

telle que @) s’écrit sous cette forme dans une base. Exprimer r en fonction de () et montrer
que les formes quadratiques correspondant a ces deux matrices ne sont pas équivalentes.

Exercice 4. (Formes quadratiques anisotropes réelles et Cauchy-Schwarz)
Soit (E, q) un espace quadratique réel. On note ¢ la forme polaire de q.

1. Montrer que ¢ est anisotrope si et seulement si ¢ est définie positive ou définie négative.

2. On suppose que ¢ est non nulle. Montrer que ¢ est anisotrope si et seulement elle vérifie
I'inégalité de Cauchy-Schwarz :

Va,y € E, ¢(z,y)* < q(z)q(y),

avec égalité si et seulement si x et y sont liés.

3. Montrer que ker(q) = C(q) si et seulement si ¢ est positive ou négative.

Exercice 5. (Décomposition polaire)
On considere 'application

| Ou(R) x SF+(R) — GL,(R)
b (0, 9) —s 0S8

On rappelle que p est bijective et continue. On va montrer que I'application p~! est aussi continue
(et donc que p est un homéomorphisme).

Soit (Pr)ken € GL,(R)N qui converge vers une matrice inversible P. On note pour tout k € N,
(Ok, Sk) € O,(R) x ST(R) 'antécédent de Py par p.

1. Justifier que 'on peut extraire une sous-suite (Oyx))r convergente. On note O, la limite de
cette suite.

2. Montrer que (S, )r converge vers une limite S, € S (R).

3. En déduire que le couple (O, S,) ne dépend pas de l'extraction ¢ choisie en question 1 et
que la suite (Oy, Sk)x converge.

4. Conclure.

Exercice 6. (Deux conséquences de la décomposition polaire)

1. Gréace a la décomposition polaire, montrer que O,(R) est un sous-groupe compact maximal
(pour l'inclusion) de GL,(R).

2. (a) Montrer que GL,(R) est dense dans M, (R).

(b) En déduire qu'une décomposition similaire existe encore sur M, (R). Est-elle unique ?

Exercice 7. (Procédé d’orthonormalisation de Gram-Schmidt et décomposition QR)

Soit (E,q) un R-espace quadratique et on suppose g définie positive. Soient (by,...,b,) une
famille de d vecteurs linéairement indépendants de E. On se propose de démontrer qu’il existe
une famille de d vecteurs (b}, ..., b)) vérifiant les propriétés suivantes :

P1 La famille (), ...,b)) est g-orthonormale.
P2 Pour tout 1 < k < d, on a Vect(d),...,b) = Vect(by, ..., bg).

2



C’est-a-dire que l'on cherche a construire famille orthonormale a partir d’une famille libre de
vecteurs. On procede par analyse-synthese. Supposons qu’'une famille (0}, ..., b)) vérifiant P1 et
P2 existe.

1.
2.

Montrer que b = ﬁﬂ)bl.

Soit i € [2,d]. On écrit b = j1;:0; + 3 p;:b) avec p; ; € R. Montrer que I'on doit avoir pour
j<i

tout j € [1,7 — 1], pjs = —pai9(bi, b).

Montrer 'existence d'une famille (b}); vérifiant P1 et P2.

. Montrer que si I’on rajoute la condition

P3 Pour tout i € [1,d], ¢(b;, b}) > 0.

7

alors la famille (b)); est unique.

Application : Soit A € GL,(R). En appliquant I'orthonormalisation de Gram-Schmidt aux
colonnes de A, montrer qu’il existe une matrice orthogonale @ € O, (R) et une matrice
triangulaire supérieure R telle que A = QR. Donner 'expression de () et de R en fonction
des vecteurs b; et b..

Exercice 8. (Une matrice symétrique non diagonalisable)

Soit A = (
7

1

_1> € S3(C). Montrer que A n’est pas diagonalisable.

Exercices supplémentaires

Exercice 9. (Topologie de 'espace des formes quadratiques réelles)
Soit £ un R-espace vectoriel de dimension finie. Pour p, ¢ € [0, n] tels que p+ ¢ < n, on note
Q, 4(E) 'ensemble des formes quadratiques sur E de signature (p, q).

1.
2.

3.

Montrer que 9, 0(E) et Qp,(E) sont ouverts dans Q(FE).
Montrer que 'adhérence de Q, ,(E) contient dans X := U Qy 4(E).

P'Sp.q'<q
Montrer que Q(FE) \ X est ouvert. (Indication : Pour Q € Q(F), considérer les applications
qui a une forme quadratique de E associe sa restriction au sous-espace maximal défini positif

(resp. défini négatif) de Q.)

4. En déduire que X est I'adhérence de 9, ,(F).

Exercice 10. (Signature et mineurs principaux)
Soit (E, q) un espace quadratique. On suppose que ¢ est non dégénérée.

1.

Soit ¢ le déterminant d’une matrice de ¢. Soit H un hyperplan de E et (eq,...,e,_1) une
base de H orthogonale pour q. Montrer qu’il existe e,, € E tel que e = (e, ..., e,) est une
base de E et tel que la matrice de ¢ dans la base e soit diagonale de déterminant d.

Pour une matrice A € M, (K) et ¢ € [1,n], on note A; le i-itme mineur principal de A,
c’est-a-dire le déterminant de la matrice (Ag )k e

Soit S € S,(K) la matrice de ¢ dans une base de E. On suppose que tous les mineurs
principaux de S sont non nuls. Montrer qu’il existe une base de E telle que la matrice de q
dans cette base soit diagonale égale a

diag (Al(S) A2(5) An(S) >

TAL(S)T T Ana(S)



3. On garde les notations et les hypotheses de la question précédente. On suppose que K = R.
Montrer que la signature de ¢ est égal & (n — s,$) ou s est le nombre de changement de
signes dans la suite (1, A1(S), Aa(S), ..., An(S)).

Exercice 11.
Soit E un C-espace vectoriel de dimension finie, et soit ¢ : F — C une forme quadratique.
Montrer que Re(q) : © — Re(q(x)) est une forme quadratique sur le R-espace vectoriel F et
donner sa signature en fonction du rang de q.

Exercice 12. (Loi de réciprocité quadratique)
Soit p un nombre premier impair. On définit le symbole de Legendre (5) :Z — {—1,0,1} par

0 sipla
() =< 1 siptaetaestun carré modulo p
—1 siptaetan’est pas un carré modulo p

On a de plus (%) =a"7 [p].
On veut démontrer dans cet exercice la loi de réciprocité quadratique : pour tous nombres
premiers impairs distincts p, ¢, on a

()

On note X = {(z1,...,2,) € F? | f: z? = 1}. On va calculer son cardinal de deux manicres
différentes. -
1. On fait agir Z/pZ sur X par k- (1, ...,2p) = (Ti1, ooy Thpp)-
(a) Que dire sur les orbites de I'action ?
(b) En utilisant la formule des classes, démontrer que | X| =1+ (g) [p].
2. On note [ la forme quadratique de F définie par :

flze, . mp) =25 + .+ xf,.

On note d := %, et g la forme quadratique de F? définie par :

d
g(yla 21y ooy Ydy Zd;s t) = QZyzzz + (_1)dt2
=1

(a) ATaide de l'exercice 3, montrer que f et g sont congruentes. En déduire que | X| = | X[,
ol
d
X' ={(y1, 21, -, Ya, za, 1) € FY | 2> yizi+ (—1)%? = 1}.
i=1
On va a présent compter les éléments de X'.
(b) Combien y a-t-il d’éléments de X’ tels que tous les y; sont nuls?
(c) Combien y a-t-il d’éléments de X' tels qu’au moins un des y; est non nul ?

3. Conclure en démontrant la loi de réciprocité quadratique.

Exercice 13. (Sous-espaces totalement isotropes : le retour)
On reprend les notations de 'exercice 11 du TD précédent. Soit ¢ une forme quadratique réelle
non dégénérée de signature (s,t). Démontrer que la dimension d’'un SETIM est min(s, t).



